If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2+41k-14=0
a = 3; b = 41; c = -14;
Δ = b2-4ac
Δ = 412-4·3·(-14)
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(41)-43}{2*3}=\frac{-84}{6} =-14 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(41)+43}{2*3}=\frac{2}{6} =1/3 $
| x+39x-18=15 | | 3n^2-16n+13=0 | | |v|-17=-10 | | 2g^2-9g-11=0 | | 9x+7=9(x+4) | | 4/x-4=2+x/x-4 | | -4(x+9)=-2x-18 | | 9/x-5=4x | | 16–4w=24 | | 12.8=2x+3 | | 10/9+10x=210 | | 3u^-40u+13=0 | | 3u^2–40u+13=0 | | 2n-3/5=n+1/4 | | 18/4x+10=16 | | 8x+45=360 | | 3m2–17m+5=0 | | 8n-17=6n+5 | | -10-3y=6 | | 4z^2–19z–3=0 | | 14z^2–19z–3=0 | | 5n^2=4n-2 | | 8.4x+97.61=-11.6x=97.45 | | 5-m/4=+18 | | 94/9)y-6=2 | | 8=10−2p | | 12n^+19n+4=0 | | 5=−19c | | y=8/(4/9) | | w^2+w-420=0 | | 8=a/7-8 | | 5x-(6-4)x=90-69 |